

2021 Final Presentation

Problem

Reduce whale entanglements

Marine life can be entangled in the vertical lines that mark traps to surface buoys

Reliable release mechanism

Releasing the buoy from the gear or base has to be reliable every single time

Low cost

Fishing has many operational costs. Redundancy with multiple units is possible with low cost

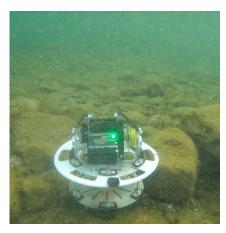
Accessible

To make this available for all fishers on the planet, the designs are released open source

EJA v2 Demo

Solution

EJA robot is a ropeless fishing system


To decrease the amount of time of the line in the water, the buoy is launched to the surface only after certain sensor data or time.

- Intelligent buoy
- 30 m / 100 ft
- ~7 kg
- GPS, LoRa, BLE
- 1x 18650 battery (3000 mAh)
- Estimated battery life: 2 days
- Magnetically coupled wiper (servo motor)
- Capability for additional sensor payloads

EJA: How does it work?

1. Timer activated

Fishers set the time of when they want the buoy to be launched

2. Robot deployed

The robot is attached to the traps/pots and travels to the seafloor

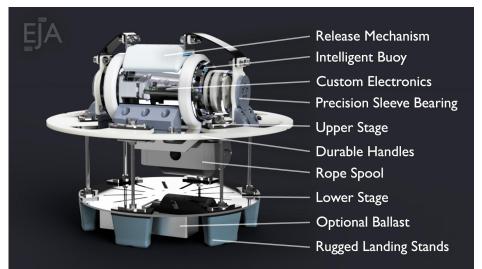
3. Buoy launched

At the correct time, the buoy is released and ascends to the surface

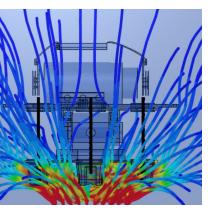
4. Location broadcast

GPS of the buoy is sent to the gateway for the gear to be retrieved

EJA v2 Release Mechanism


EJA v2 Buoy Ascent

Design


Comprised of different materials for each purpose:

- Sleeve bearing (delrin + milled aluminum)
- HDPE handles
- 1/8" Aluminum stage bases
- Paracord spool 100 ft / 30 m
- 3D printed nylon stands, clamps, holders
- Metal internal wiper and bracket
- Nalgene enclosure for buoy
- PTFE tape on threads
- Rubber bumpers, custom metal washers
- O-ring piece as backup
- Wooden deck for transporting (incredibly useful)
- … and electrical tape!

How it reached this point: backed up with analysis

Prototyping

Through v1 prototype, figured out how all the pieces link together to form this system. Many concept sketches too

CFD Simulation After CAD model designed, used computational fluid dynamics to analyze

system on entry to water

Physics Model

Developed a physics model to determine weight:buoyancy ratio, rope tension, descent velocity, drag force

Experts

Learning from others, such as the DesignLab Dream Teams meetings with Giovanni, saved us from many pitfalls

Evaluation

The Canadian Wildlife Federation developed a framework for classifying ropeless fishing systems based on functionality critical to fishers.

Here's the areas where EJA is strongest:

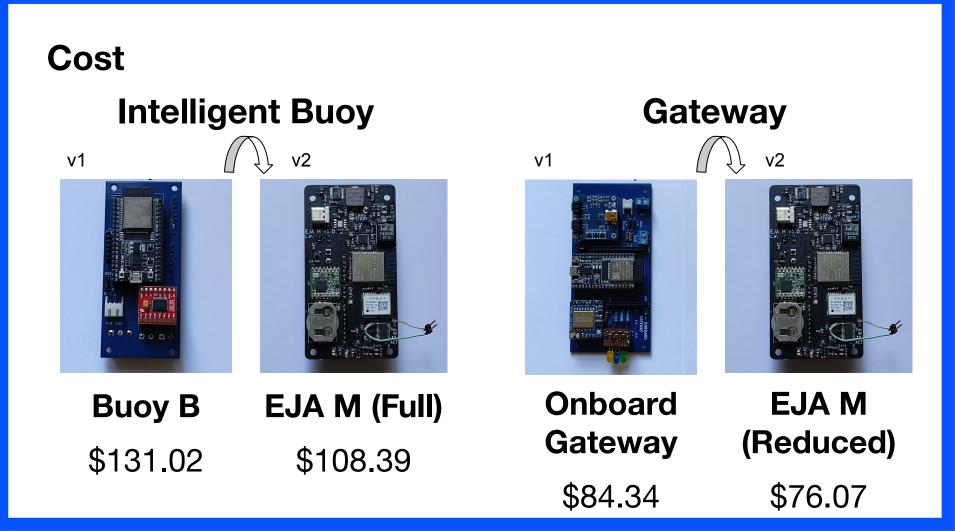
- Durability
- Safe to use
- Easy to reset
- Easy to store

With additional software development, the following could be met:

- Detectability of traps
- Enforcement & monitoring

Overall Cost

This cost number reflects quantity ONE. Cost will go down with larger production runs.


1 gateway + 1 buoy + 1 base

The largest unknown is the fabrication cost, which depends on quantity and shop.

Amount of time to assemble was ~15 hours. This would decrease with streamlined instructions.

- Electronics: \$184.45
- Hardware: \$326.01
- Raw Materials + Fabrication: ~\$1500

TOTAL: \$2010.46

New Design EJA M v1.0

The new design can replace our 3 previous designs Buoy A v1.0, Buoy B v1.0 and Onboard Gateway v1.0. **Features:**

- LoRa
- GPS
- ESP32
- Real Time Clock
- Servo Motor Driver
- Battery Charger
- Accelerometer

A reduced version is proposed to reduce the price when less features are required.

Design Process

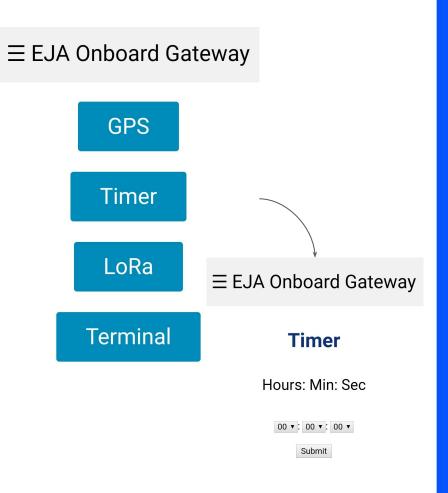
LoRa

GPS

EJA M

Features - Buoy


Features	Buoy A v1.0 (2020)	Buoy B v1.0 (2020)	EJA M v1.0 (2021)	
LoRa	\checkmark	\checkmark	\checkmark	
GPS	\checkmark	\checkmark	\checkmark	
ESP32	\checkmark	\checkmark	\checkmark	
Real Time Clock	\checkmark	\checkmark	\checkmark	
Servo Motor Driver	\checkmark	\checkmark	\checkmark	
DC Motor Driver	\checkmark	\checkmark		
4G(LTE)	\checkmark			
Battery Charger			\checkmark	
Accelerometer			\checkmark	


Features - Gateway

Features	Onboard Gateway v1.0 (2020)	EJA M v1.0 (2021)
LoRa	\checkmark	\checkmark
ESP32	\checkmark	\checkmark
Real Time Clock		\checkmark
Battery Charger	\checkmark	\checkmark

User Interface

- Set the timer for each buoy
- Track the position of the buoys directly from the app
- Receive notifications from the buoys when they reach the surface
- Update and troubleshoot the buoys

Prototyping

- Replace FTDI IC
- Fix ON/OFF circuit
- Manage power consumption
- Fix servo module design
- Field testing

EVT Engineering Validation Tests

- Hardware & software integration
- Implement notifications
- Include datalogging
- Facilitate troubleshooting
- Develop phone application

DVT Design Validation Tests

- Extensive beta tests
- Adjust to required depth (rope, ballast and buoyancy)
- Receive feedback
 from real fishers
- Improve assembly instructions

Links

Check out our project page and source repositories to learn more

- Project page
- Call for beta testers
- <u>Electronics Github repository</u>
- Design Github repository

Find everything on Hackaday.io page:

https://hackaday.io/project/173457-2021-hdp-dream-te am-eja

Thank You!

Thank you to everyone who has helped and been a part of this project

- Supplyframe and Hackaday
- Giovanni Salinas
- Majenta Strongheart
- Bruce Dominguez
- Jason Alford
- Bob Eder Dungeness Crab Fisher in Newport, OR
- Clarissa Redwine
- Dr. Ed Trippel
- Oluwatobi Oyinlola (Tobi)
- Conservation X Labs
- Plus more who have been kind enough to lend their experience in telling us more about fishing!

